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Letters
A stereoselective synthesis for the (5Z,9Z)-14-methyl-5,9-
pentadecadienoic acid and its monounsaturated analog (Z)-14-

methyl-9-pentadecenoic acid
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Abstract—A stereoselective synthesis for the (5Z,9Z)-14-methyl-5,9-pentadecadienoic acid and the monounsaturated analog (Z)-14-
methyl-9-pentadecenoic acid was accomplished in six to seven steps where double alkyne coupling was the key step. This synthesis
will facilitate the study of the topoisomerase I inhibitory profile of this important class of fatty acids.
� 2004 Elsevier Ltd. All rights reserved.
The (5Z,9Z)-14-methyl-5,9-pentadecadienoic acid (1) is
a bioactive fatty acid that was identified for the first time
in the Caribbean gorgonian Eunicea succinea.1 Such an
acid was of interest because it is antimicrobial against
Staphylococcus aureus (MIC 0.24 lmol/mL) and Strep-
tococcus faecalis (MIC 0.16 lmol/mL).1 In addition, acid
1 displays cytotoxicity against the epidermoid carci-
noma (A431) cell line (IC50 ¼ 48 lg/mL) and the lung
carcinoma (NCI-H460) cell line (IC50 ¼ 51 lg/mL).2

Inhibition of human topoisomerase I is a possible
mechanism of bioactivity for 1. However, before the
topoisomerase I inhibitory activity of 1 can be fully
elucidated, a 100% stereoselective synthesis for 1 is still
warranted since topoisomerase I inhibition is very sen-
sitive to the double bond stereochemistry of fatty acids.3

A previous six-step synthesis for acid 1 started with
pent-4-yn-1-ol and combined alkyne-bromide coupling
and Wittig reaction as a coupling combination to
assemble the D5;9 functionality.2 Unfortunately, this
methodology afforded 95% of the desired (5Z,9Z)
stereoisomer, but still 5% of the undesired (5E,9Z)
stereoisomer was also obtained, which can affect the
outcome of the topoisomerase I biological testing.3 With
this in mind we have developed herein a new synthetic
route for this type of iso-branched fatty acids based on a
double alkyne-bromide coupling reaction utilizing 1,5-
hexadiyne (3) as the key starting material.
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In addition, we have also accomplished the first total
synthesis of the (Z)-14-methyl-9-pentadecenoic acid (2),
a fatty acid that was first identified in several marine
bacterial isolates, but it has never been synthesized.4

Acid 2 has also the potential of displaying good topo-
isomerase I inhibitory activity since iso- and anteiso C15–
C17 fatty acids, isolated from a Streptomyces sp., dis-
played significant inhibition of topoisomerase I activ-
ity.5

Our synthesis for the (5Z,9Z)-14-methyl-5,9-pentade-
cadienoic acid (1) started with commercially available
1,5-hexadiyne (3), which was monoalkylated with 1-
bromo-4-methylpentane using n-BuLi in THF–HMPA
affording, in a 48% yield, the monoalkylated adduct 4
(Scheme 1). The remaining open alkyne in the dialkyne
was subsequently alkylated under identical reaction
conditions with (4-bromobutoxy)-tert-butyldimethyl-
silane as the alkylating agent, which afforded the desired
silylated pentadecadiyne 5 in a 44% yield. Deprotection
of the tert-butyldimethylsilyl group was efficiently
undertaken with tetrabutylammonium fluoride (TBAF)
in THF affording alcohol 6 in an 81% isolated yield. The
strategy of transforming first the alcohol to the aldehyde
instead of going directly to the acid was followed for this
synthesis, inasmuch as the alcohol was first converted
into the aldehyde by reacting the 14-methyl-5,9-penta-
decadiyn-1-ol with PCC in CH2Cl2 affording 14-methyl-
5,9-pentadecadiynal in a 50% yield. Subsequent oxida-
tion of the 14-methyl-5,9-pentadecadiynal with sodium
chlorate (NaClO2) and NaH2PO4 buffer in tert-butanol
afforded the pentadecadiynoic acid 7 in a 34% isolated
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Scheme 1. Reagents and conditions: (i) n-BuLi, 1-bromo-4-methylpentane, THF–HMPA; (ii) n-BuLi, (4-bromobutoxy)-tert-butyl-dimethylsilane,

THF–HMPA, �78 �C; (iii) TBAF, THF, rt; (iv) PCC, CH2Cl2, rt; (v) NaClO2, t-BuOH, 48 h, rt; (vi) H2, Lindlar.
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yield. For the final step, catalytic hydrogenation of the
dialkyne with 5% Pd/C in quinoline afforded the desired
(5Z,9Z)-14-methyl-5,9-pentadecadienoic acid (1) in
a 52% yield and in 100% Z,Z stereoselectivity.6

The overall yield for this six-step synthesis was 2%
(Scheme 1).

The synthesis of (Z)-14-methyl-9-pentadecenoic acid (2)
started with commercially available 4-methyl-1-bromo-
pentane (8), which was transformed with n-butyllithium
and trimethylsilylacetylene into the heptyne 9 in a 94%
isolated yield (Scheme 2), which was further treated with
sodium hydroxide in methanol yielding the expected 6-
methyl-1-heptyne (10) in a 62% yield. Formation of the
lithium acetylide of 10 with n-butyllithium in THF–
HMPA, and subsequent addition of 8-(bromooctyloxy)-
tert-butyldimethylsilane resulted in the isolation of the
silylated pentadecyne 11 in a 33% yield. It is important
to emphasize that in the lithium acetylide coupling
reaction the bromoalkane must be added in HMPA,
otherwise the cross coupling does not work as well.
Reaction of 11 with tetrabutylammonium fluoride
(TBAF) in THF afforded 14-methyl-9-pentadecyn-1-ol,
which was isolated in a 79% yield. The 14-methyl-9-
pentadecyn-1-ol was oxidized with pyridinium chloro-
chromate (PCC) in CH2Cl2 affording aldehyde 12 in a
99% yield. Further oxidation of the aldehyde with
sodium chlorate (NaClO2) and NaH2PO4 buffer in tert-
Br
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Scheme 2. Reagents and conditions: (i) trimethylsilylacetylene, n-BuLi, HMP

BuLi, HMPA, THF, 0 �C, 48 h; (iv) TBAF, THF, 0 �C, 24 h; (v) PCC, CH2Cl

quinoline.
butanol afforded the pentadecynoic acid 13 in a 52%
yield. To finish the synthesis catalytic hydrogenation of
the alkyne with 5% Pd/C in quinoline afforded the
desired 14-methyl-9(Z)-pentadecenoic acid (2) in a 57%
yield and in 100% Z stereoselectivity.7 The overall yield
for this seven-step synthesis was 4% (Scheme 2).

In summary, we have accomplished a stereoselective
syntheses for the (5Z,9Z)-14-methyl-5,9-pentadecadi-
enoic acid (1) and the monounsaturated analog (Z)-14-
methyl-9-pentadecenoic acid (2), both novel candidates
for topoisomerase I inhibition. Our synthetic approach
is open to the synthesis of other similar but longer D5;9

fatty acids, such as the (5Z,9Z)-25-methyl-5,9-hexacosa-
dienoic acid, which also inhibit topoisomerase I at lower
concentrations and should provide access to these ana-
logues for further biological evaluation.8
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A, THF, �78 �C; (ii) NaOH, MeOH, rt, 24 h; (iii) Br–(CH2)8–OTBS, n-

2, rt, 24 h; (vi) NaClO2, NaH2PO4-buffer, t-BuOH, 48 h; (vii) H2, Pd/C,
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